Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human
نویسندگان
چکیده
In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR) from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.
منابع مشابه
A descending dopamine pathway conserved from basal vertebrates to mammals.
Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson's disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that ...
متن کاملSpinal Locomotor Inputs to Individually - Identified Reticulospinal 1 Neurons in the Lamprey
23 Locomotor feedback signals from the spinal cord to descending brainstem 24 neurons were examined in the lamprey using the uniquely-identifiable reticulospinal 25 neurons, the Müller and Mauthner cells. The same identified reticulospinal neurons 26 were recorded in several preparations, under reduced conditions, to address whether 27 an identified reticulospinal neuron shows similar locomotor...
متن کاملThe spinobulbar system in lamprey.
Locomotor networks in the spinal cord are controlled by descending systems which in turn receive feedback signals from ascending systems about the state of the locomotor networks. In lamprey, the ascending system consists of spinobulbar neurons which convey spinal network signals to the two descending systems, the reticulospinal and vestibulospinal neurons. Previous studies showed that spinobul...
متن کاملGating of steering signals through phasic modulation of reticulospinal neurons during locomotion.
The neural control of movements in vertebrates is based on a set of modules, like the central pattern generator networks (CPGs) in the spinal cord coordinating locomotion. Sensory feedback is not required for the CPGs to generate the appropriate motor pattern and neither a detailed control from higher brain centers. Reticulospinal neurons in the brainstem activate the locomotor network, and the...
متن کاملndogenous dopaminergic modulation of the lamprey spinal locomotor network 1 1 * ̈
The lamprey spinal cord contains three dopaminergic systems. The most extensive is the ventromedial plexus in which dopamine is co-localized with 5-HT and tachykinins. In this study we have investigated the effects of endogenously released dopamine on NMDA-induced spinal activity, and for comparison applied dopamine exogenously. The dopamine reuptake blocker bupropion increases the levels of ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017